

Chapter 3
Boolean
Logic

Boolean Logic

What does a Computer

Understands

Computers do not understand natural languages nor programming languages. They only understand the language of bits. A bit is the most basic unit in computer machine language. All instructions that the computer executes and the data that it processes is made up of a group of bits. Bits are represented in many forms either through electrical voltage, current pulses, or by the state of an electronic flip-flop circuit in form of 0

Boolean Logic

Boolean Logic
Because of computer understands machine language(0/1) which is binary value so every operation is done with the help of these binary value by the computer.
George Boole, Boolean logic is a form of algebra in which all values are reduced to either 1 or 1.
To understand boolean logic properly we have to understand Boolean logic rule,Truth table and logic gates

Boolean Logic rules Boolean Algebra is the mathematics we use to analyse digital gates and circuits. We can use these "Laws of Boolean" to both reduce and simplify a complex Boolean expression in an attempt to reduce the number of logic gates required.

Boolean Expression Boolean Algebra Law or Rule

$A+1=1$	Annulment
$A+0=A$	Identity
A. $1=A$	Identity
A. $0=0$	Annulment
$A+A=A$	Idempotent
$A \cdot A=A$	Idempotent
NOT A = A	Double Negation
$A+A=1$	Complement
A. $A=0$	Complement
$A+B=B+A$	Commutative
$A \cdot B=B \cdot A$	Commutative
$A+B=A . B$	de Morgan's Theorem
$A \cdot B=A+B$	de Morgan's Theorem

Visit : python.mykvs.in for regular updates

Boolean Logic

Boolean Expression

A Boolean expression is a logical statement that is either TRUE or FALSE .
A Boolean expression can consist of Boolean data, such as the following:

* BOOLEAN values (YES and NO, and their synonyms, ON and OFF, and TRUE and FALSE)
* BOOLEAN variables or formulas
* Functions that yield BOOLEAN results
- BOOLEAN values calculated by comparison operators. E.g.

1. $\$ F(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x y^{\prime} z+x y z z^{\prime}+x y z$
2. $\$ F^{\prime}(x, y, z)=x^{\prime} y z+x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}$
3. $\$ F(x, y, z)=(x+y+z) \cdot\left(x+y+z^{\prime}\right) \cdot\left(x+y^{\prime}+z\right) \cdot\left(x^{\prime}+y+z\right)$

De Morgan's Law

The complement of the union of two sets is equal to the intersection of their complements and the complement of the intersection of two sets is equal to the union of their complements. These are called De Morgan's laws.

For any two finite sets A and B
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ (which is a De Morgan's law of union).

OR
$(A+B)^{\prime}=A^{\prime} . B^{\prime}$
(ii) $(A \cap B)^{\prime}=A^{\prime} U B^{\prime}$ (which is a De Morgan's law of intersection).

OR
$(A . B)^{\prime}=A^{\prime}+B^{\prime}$

Proof of De Morgan's law: $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Let $P=(A \cup B)^{\prime}$ and $Q=A^{\prime} \cap B^{\prime}$
Let x be an arbitrary element of P then $x \in P \Rightarrow x \in(A \cup B)^{\prime}$
$\Rightarrow x \notin(A \cup B)$
$\Rightarrow x \notin A$ and $x \notin B$
$\Rightarrow x \in A^{\prime}$ and $x \in B^{\prime}$
$\Rightarrow x \in A^{\prime} \cap B^{\prime}$
$\Rightarrow x \in Q$
Therefore, $\mathrm{P} \subset \mathrm{Q}$
Again, let y be an arbitrary element of Q then $y \in Q \Rightarrow y \in A^{\prime} \cap B^{\prime}$
$\Rightarrow y \in A^{\prime}$ and $y \in B^{\prime}$
$\Rightarrow y \notin A$ and $y \notin B$
$\Rightarrow y \notin(A \cup B)$
$\Rightarrow \mathrm{y} \in(\mathrm{A} \cup \mathrm{B})^{\prime}$
$\Rightarrow y \in P$
Therefore, $Q \subset P$.................. (ii)
Now combine (i) and (ii) we get; $P=Q$ i.e. $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Visit : python.mykvs.in for regular updates

Proof of De Morgan's law: $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Let $\mathrm{M}=(\mathrm{A} \cap \mathrm{B})^{\prime}$ and $\mathrm{N}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
Let x be an arbitrary element of M then $x \in M \Rightarrow x \in(A \cap B)^{\prime}$
$\Rightarrow x \notin(A \cap B)$
$\Rightarrow x \notin A$ or $x \notin B$
$\Rightarrow x \in A^{\prime}$ or $x \in B^{\prime}$
$\Rightarrow x \in A^{\prime} \cup B^{\prime}$
$\Rightarrow x \in N$
Therefore, $\mathrm{M} \subset \mathrm{N}$
Again, let y be an arbitrary element of N then $y \in N \Rightarrow y \in A^{\prime} U B^{\prime}$
$\Rightarrow y \in A^{\prime}$ or $y \in B^{\prime}$
$\Rightarrow y \notin A$ or $y \notin B$
$\Rightarrow y \notin(A \cap B)$
$\Rightarrow y \in(A \cap B)^{\prime}$
$\Rightarrow y \in M$
Therefore, $\mathrm{N} \subset \mathrm{M}$
Now combine (i) and (ii) we get; $M=N$ i.e. $(A \cap B)^{\prime}=A^{\prime} U B^{\prime}$

Boolean Logic

Truth table

A truth table is a mathematical table used in logic. e.g.

| A | B | (A and B) | (or B) | not $(\mathbf{A}$ and B) | not $(\mathbf{A}$ or B) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| True | True | True | True | False | False |
| True | False | False | True | True | False |
| False | True | False | True | True | False |
| False | False | False | False | True | True |

Boolean Logic

Logic Gates
Logic gate is an idealized or physical device implementing a Boolean function.These are used to construct logic circuit.

	LOGIC GATES	
Logic gate symbol	Description	Bcolean
$A-\square-x$	The AND gate output is at logic 1 when, and only when all its inputs are at logic 1. otherwise the output is at logic 0 .	$X=A \cdot B$
	The OR gate ouput is at logic 1 when one or more of its inputs are at logic 1 . If all the inputs are at logic 0 , the output is at logic 0 .	$X=A+B$
	The NAND Gate output is at logic 0 when, and only when all its inputs are at logic 1. otherwise the output is at logic $\mathbf{1}$.	$X=\bar{A} \cdot B$
	The NOR gate output is at logic 0 when one or more of its inputs are at logle 1 . If all the inputs are at logic 0 , the output is at logic 1.	$X=A+B$
$\mathrm{A} \rightarrow \square-\mathrm{x}$	The XOR gate output is at logic 1 when one and ONLY ONE of its inputs is at logic 1. Otherwise the output is logic 0 .	$\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$
$A->0-x$	The XNOR gate output is at logic 0 when one and ONLY ONE of its inputs is at logic 1. Otherwise the output is logic 1. (It is similar to the XOR gate, but its output is inverted).	$X=A \oplus B$
A	The NOT gate output is at logic 0 when its only input is at logic 1 , and at logic 1 when its only input is at logic 0 . For this reason it is often called an INVERTER.	$X=\bar{A}$

Logic circuit

Construct a truth tables for following circuits of logic gates

Construct the logic circuit of following

1. $C+B C$:
$A B+B C(B+C)$

Boolean Logic

Universal gates are the logic gates which are capable of implementing any Boolean function without requiring any other type of gate.

Types of Universal Gates-
In digital electronics, there are only two universal gates which are-

1. NAND Gate
2. NOR Gate
